
Computer modelling and artificial intelligence 
with big data for better diagnostics and 

therapy of cardiovascular disease
Abstract: In silico clinical trials are the future of medicine and virtual testing and simulation are the future of 
medical engineering. The use of a computational platform can reduce costs and time required for developing new 
models of medical devices and drugs. The computational platform in different projects, such as SILICOFCM, was 
developed using state-of-the-art finite element modelling for macro simulation of fluid-structure interaction with 
micro modelling at the molecular level for drug interaction with the cardiac cells. SILICOFCM platform is used for 
risk prediction and optimal drug therapy of familial cardiomyopathy in a specific patient. 
STRATIFYHF project is to develop and clinically validate a truly innovative AI-based Decision Support System for 
predicting the risk of heart failure, facilitating its early diagnosis and progression prediction that will radically change 
how heart failure is managed in both primary and secondary care. This rapid expansion in computer modelling, 
image modalities and data collection, leads to a generation of so-called “Big Data” which are time-consuming to 
be analyzed by medical experts.
In order to obtain 3D image reconstruction, the U-net architecture was used to determine geometric parameters for 
the left ventricle which were extracted from the echocardiographic apical and M-mode views. A micro-mechanics 
cellular model which includes three kinetic processes of sarcomeric proteins interactions was developed. It allows 
simulation of the drugs which are divided into three major groups defined by the principal action of each drug. 
The presented results were obtained with the parametric model of the left ventricle, where pressure-volume (PV) 
diagrams depend on the change of Ca2+. It directly affects the ejection fraction. The presented approach with the 
variation of the left ventricle (LV) geometry and simulations which include the influence of different parameters 
on the PV diagrams are directly interlinked with drug effects on the heart function. It includes different drugs such 
as Entresto and Digoxin that directly affect the cardiac PV diagrams and ejection fraction. 
Computational platforms such as the SILICOFCM and STRATIFYHF platforms are novel tools for risk prediction of 
cardiac disease in a specific patient that will certainly open a new avenue for in silico clinical trials in the future.
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1. Introduction

Cellular and molecular biology have a very strong 
influence on our understanding of the structure 
and function of the heart at the microscopic level. 
At the macroscopic level, the heart functions as a 
pump that continuously pumps blood throughout 
the human body. It is necessary to apply an inter-
disciplinary approach in order to understand the 
integrated function of the heart, which includes 
electricity, physical chemistry, solid mechanics, and 
fluid dynamics (multiphysics simulation). To better 
understand different events that occur during a 
cardiac cycle, both microscopic and macroscopic 
mechanisms should be taken into account in the 
development of an integrated model.

Familial cardiomyopathies (FCM) are most 
commonly diagnosed, or progress of the disease 
is monitored through in vivo imaging, with either 
echocardiography or, increasingly, cardiac mag-
netic resonance imaging (MRI). The treatment of 
symptoms of FCM by established therapies could 
only in part improve the outcome, but novel ther-
apies need to be developed to more fundamentally 
affect the disease process and time course. 

It is very important to use a detailed, complex, 
and anatomically accurate model of the whole heart 
electrical activity which requires extensive compu-
tation times, dedicated software, and even the use of 
supercomputers (Gibbons et al., 2006, Pullan et al., 
2005). We have recently developed a methodology 
for a real 3D heart model by using the linear elastic 
and orthotropic material model based on Holzapfel 
experiments. Using this methodology, we can accu-
rately predict the transport of electrical signals and 
displacement field within heart tissue (Kojic et al., 

2019). Muscles in the body except the heart muscle 
are activated by electrical signals, transmitted from 
the nervous system to muscle cells, affecting the 
change of the cell membranes potentials. Addi-
tionally, calcium current and concentration inside 
muscle cells are the main cause of generating active 
stress within muscle fibers. Clinical validation in 
humans is very limited since simultaneous whole 
heart electrical distribution recordings are inacces-
sible for both practical and ethical reasons (Trudel 
et al., 2004). The rapid development of information 
technologies, simulation software packages and 
medical devices in recent years provides the op-
portunity for collecting a large amount of clinical 
information. Creating comprehensive and detailed 
computational tools has become essential to pro-
cess specific information from the abundance of 
available data. From the point of view of physicians, 
it becomes of paramount importance to distinct 
“normal” phenotypes from the appearance of the 
phenotype in a specific patient in order to esti-
mate disease progression, therapeutic responses 
and future risks. Recently developed computational 
models have significantly improved integrative un-
derstanding of the heart muscle behaviour in HCM 
and DCM cardiomyopathies. The development of 
novel integrative modelling approaches could be an 
effective tool in distinguishing the type and severity 
of symptoms in, for example, multi-genic disorder 
patients, and assess the degree to which normal 
physical activity is impaired. 

Some of the main problems in developing fast 
and accurate algorithms for automatic LV segmen-
tation in apical images are the presence of speckle, 
low signal to noise ratio, weak echoes etc., which 
commonly occur in ultrasound images. Additional-
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ly, there is no simple connection between the pixel 
intensity values in images and physical characteris-
tics of the tissue of interest, which makes threshold-
ing algorithms impossible to use in segmentation 
in ultrasound images (Moradi et al., 2019). As a 
result, many authors tried to address the problem of 
segmentation using different approaches, including 
active shape, active contours, appearance meth-
ods, as well as machine learning-based methods 
(Noble & Boukerroui, 2006). Their main focus is 
the endocardial border detection on one echocar-
diography image frame. The literature shows that 
the level-set approaches are not that sensitive to 
initial conditions, but instead their main limitations 
are the imaging conditions. In contrast, deform-
able templates are robust to imaging conditions, 
however they are very sensitive to the initialization 
conditions (Bosch et al., 2002).

As a result, Big Data technologies contain new 
frameworks for processing medical data playing an 
important role in data management, organizing, 
and analysis through the use of machine learn-
ing and deep learning approaches (Kouanou et al., 
2018). It also enables fast data access via the NoSQL 
database (Kouanou et al., 2018). In the area of med-
ical image analysis, due to significant improvement 
in image collecting equipment, the data is relative-
ly huge (going to Big Data), which makes image 
analysis challenging (Razzak, Naz & Zaib, 2018). 
It is said that due to digitalization of medical re-
positories in hospitals, as well as the use of medical 
images, digital medical archives size is growing at 
exponential rate (Ashraf et al., 2020). According 
to the McKinsey Global Institute, if US healthcare 
uses Big Data creatively and efficiently, the sector 
could generate more than $300 billion in value per 

year. Two-thirds of the value would be realized 
through lowering US healthcare spending (Belle 
et al., 2015). This fast expansion in medical image-
ry and modalities necessitates considerable and 
time-consuming efforts by medical experts, who are 
subjective, prone to human error, and there are also 
interpersonal differences. Using machine learning 
techniques to automate the diagnosis process is an 
alternative response to aforementioned challenges; 
however, typical machine learning methods are 
unable to cope with complex problems (Razzak, 
Naz & Zaib, 2018). The successful combination 
of high-speed computers with machine learning 
promises the ability to cope with large amounts of 
medical image data for accurate and fast diagnosis 
(Razzak, Naz & Zaib, 2018). In recent years, ma-
chine learning (ML) and artificial intelligence (AI) 
have advanced quickly, finding their role in med-
ical image processing, computer-aided diagnosis, 
image fusion, registration, image segmentation, as 
well as image-guided treatment. ML techniques 
extract information (called features) from images 
and effectively perform decision making (Razzak, 
Naz & Zaib, 2018).

The main focus of the SILICOFCM project 
(www.silicofcm.eu) has been on multiscale mod-
elling of familial cardiomyopathy, taking into con-
sideration a comprehensive list of patient-specific 
features such as genetic, biological, pharmacologic, 
clinical, imaging and cellular aspects. The main 
result of the project is the in silico clinical platform 
with biomechanics of the heart as its main part. 
The platform is developed using state-of-the-art 
finite element modelling for macro simulation of 
fluid-structure interaction with micro modelling 
at the molecular level for drug interaction with 

http://www.silicofcm.eu
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the cardiac cells. The platform can be used for risk 
prediction and optimal drug therapy of familial 
cardiomyopathy in a specific patient. The overar-
ching aim of STRATIFYHF project is to develop 
and clinically validate a truly innovative AI-based 
Decision Support System (DSS) for predicting risk 
of heart failure (HF), facilitating its early diagno-
sis and progression prediction that will radically 
change how HF is managed in both primary and 
secondary care. The DSS integrates patient-centred 
data obtained using existing and novel technologies, 
a digital patient library and AI-based algorithms 
and computational modelling.

2. Method 

2.1 Image reconstruction from echocardiography

The proposed methodology for echocardiography 
image reconstruction is divided into two sections: 
the first section includes the methods used to ana-
lyze apical view, while the second one includes the 
methods used to analyze M-mode view. A detailed 
description is provided in Fig. 1. DICOM image 
format is used as the input to the system. The end 
user (expert) selects which view is best represented 
by the image and feeds it to the algorithm.

Fig. 1 Description of the proposed methodology for the automatic heart ultrasound segmentation and geometric 
parameter extraction.
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Three alternatives are provided by the SILICOFCM 
tool: 4-chamber, 2-chamber, or M-mode. This tool 
will further analyze the images depending on the 
view mode:

1. Apical 4-chamber view analysis includes 
segmentation of the LV using the U-net 
previously trained and calculating the bor-
dering rectangle as shown in Fig. 1 (left 
side), based on which parameters LVLd 
[cm] and LVLs [cm] A4C will be calcu-
lated. The user should define if the view 
represents the systolic or diastolic phase.

2. Apical 2-chamber view analysis includes 
segmentation of the LV using the U-net 
previously trained and calculating the bor-
dering rectangle as shown in Fig. 1 (right 
side), based on which parameters LVLd 
[cm] and LVLs [cm] A2C will be calcu-
lated. The user should define if the view 
represents the systolic or diastolic phase.

3. M-mode view analysis includes bordering 
of the characteristic areas of the LV – sep-
tum in diastole, diameter in diastole, LV 
wall in diastole, septum in systole, diameter 
in systole and LV wall in systole (Fig. 1 - 
middle). Based on these areas, parameters 
IVSd [cm], IVSs [cm], LVIDd [cm], LVIDs 
[cm], LVPWd [cm], LVPWs [cm] will be 
calculated. The user should define that the 
view is M-mode.

If the user has all three views in systolic and 
diastolic phase available (which should be the case 
when imaging the patient), then all relevant pa-
rameters are calculated from these three views and 
automatic calculation of relevant cardiomyopathy 

diagnostic parameters can be further performed 
(i.e. – EF [%], ES [%], SV [ml], LVd mass [g], LVs 
mass [g], etc.).

2.2 Big Data Technologies for Medical Image 
Processing

Parallel computing is detected as critical infrastruc-
ture for managing Big Data. It can perform analysis 
on a cluster of devices or supercomputers at the 
same time. Big Data technology with Artificial In-
telligence (AI) and massively parallel computing can 
be used for a revolutionary way of prediction and 
personalized medicine (Dilsizian & Siegel, 2014). 
Novel parallel computing models, such as Goog-
le’s MapReduce (Dean & Ghemawat, MapReduce: 
simplified data processing on large clusters, 2008), 
have been proposed in recent years for a new large 
data infrastructure. Apache has launched Hadoop 
(White, 2015), an open-source MapReduce soft-
ware for distributed data management. Concurrent 
data access to clustered servers is supported via 
the Hadoop Distributed File System (HDFS). Ha-
doop-based services may also be thought of as cloud 
computing platforms, allowing for centralized data 
storage as well as remote access through the Inter-
net. As such, cloud computing is a revolutionary 
concept for distributing customizable computa-
tional resources across a network (Armbrust, Fox 
& Griffith, 2010), and it may function as an infra-
structure, platform, and/or software to provide an 
integrated solution. Furthermore, cloud computing 
may increase system speed, agility, and flexibility 
by eliminating the need to maintain hardware or 
software capacity and necessitating less resources 
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for system maintenance, such as installation, setup, 
and testing. Cloud technologies are at the heart of 
many emerging Big Data applications (Luo, Wu, 
Gopukumar, & Zhao, 2016). Additionally, Hadoop 
and Spark frameworks have been identified as opti-
mal and efficient architecture for biomedical image 
analysis (Kouanou et al., 2018). 

In addition, High Performance Computing 
(HPC) uses parallel processing and advanced pro-
grams, or software packages speed up massive cal-
culations. In that sense, Finite Element Method 
(FEM), which represents a continuum method 
for very powerful scientific computation analysis, 
strongly relies on advanced computer technolo-
gy and HPC. Traditional database and software 

techniques cannot be used for these large-scale 
computations (Demchenko, Grosso, De Laat, & 
Membrey, 2013). High Performance Computing 
(HPC) can be used in medicine contained in Big 
Data (Lavignon et al., 2013). Massive multiscale 
computation with multiscale material models, or 
finite element computation with adaptive mesh 
refinement can be run only on supercomputers 
with Big Data on parallel disk systems (Parashar, 
2014). A detailed, complex, and anatomically ac-
curate model of the whole heart electrical activity 
which requires extensive computation times, and 
the use of supercomputers are already established 
in the literature (Gibbons Kroeker, Adeeb, Tyberg, 
& Shrive, 2006; Kojic et al., 2019). The authors of 

Fig. 2. Job execution using Spark technologies – one master cluster and four slaves
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this paper have recently developed a methodolo-
gy for a real 3D heart model, by using the linear 
elastic and orthotropic material model based on 
Holzapfel experiments. Using this methodology, 
the transport of electrical signals and displace-
ment field within heart tissue can be accurately 
predicted (Filipovic et al., 2022). Clinical valida-
tion in humans is very limited since simultaneous 
whole heart electrical distribution recordings are 
inaccessible for both practical and ethical reasons 
(Filipovic et al., 2022).

On the other hand, Apache Spark is a distrib-
uted computing platform that has become one of 
the most powerful frameworks in the Big Data sit-
uation. Spark provides a consistent and compre-
hensive framework for managing the needs for Big 
Data processing using a range of datasets (graph 
data, image/video data, text data, and so on) from 
various sources (batch, real-time streaming) (Tchito 
Tchapga et al., 2021). According to its designers, 
the Spark framework was intended to address the 
shortcomings of the Hadoop framework. In some 
cases, the Spark framework has shown to be quicker 
than Hadoop (more than 100 times in memory). 
Performance can be quicker than other Big Data 
technologies with advantages such as in-memory 
data storage and near real-time processing (Tchito 
Tchapga et al., 2021). The Spark framework can 
prepare data for iteration, query it frequently, and 
load it into memory. The main program (driver) in 
the Spark framework supervises many slaves (work-
ers) and collects their results, whilst slaves’ nodes 
read data partitions (blocks) from a distributed file 
system, run various computations, and write the 
results to disk (Fig. 2). This means that the master 
controls and assigns jobs to slaves. 

Spark, like Hadoop, is built on parallel pro-
cessing MapReduce, which seeks to process data in 
a simple and transparent manner across a cluster 
of computers. Spark enables SQL queries, stream-
ing data, machine learning, and graph processing 
data in addition to Map and Reduce operations 
(Kouanou, et al., 2018). In Spark, program can oc-
casionally run the algorithm on several clusters 
at the same time. Although the number of slaves 
can be increased due to dataset size, the increase 
in the number of slaves results in an increase in 
processing time.

2.3 Cellular model (Mijailovich-Prodanovic MP 
surrogate and drug model)

The finite element (FE) solvers require calculation 
of active tension and variable muscle stiffness in 
each element integration point over all finite el-
ements. Moreover, a relatively fine FE mesh and, 
therefore, a large number of finite elements are 
required to precisely calculate the change of heart 
geometry during a heartbeat. On the other hand, 
calculation of instantaneous active tension and 
muscle stiffness by, for example, sliding filament 
cross-bridge models, requires a solution of partial 
differential equations (PDE) or Monte Carlo ap-
proaches (Mijailovich et al., 2019). Furthermore, 
coupling of FE solvers to simulate muscle function 
at the organ level (Mijailovich et al., 2021) with even 
simpler models, involving the solution of PDEs by 
the method of characteristics, requires extremely 
large computational memory and a prolonged time 
for the execution of simulations even if the simula-
tions are limited to coarse FE meshes. 



52 |

PROGRESS
Vol. V / No. 2
2024.

Parameters for the MP surrogate model were 
obtained through an automated process of param-
eter fitting based on a genetic algorithm. The goal 
was to minimize the root mean square error (RM-
SE) for obtaining the muscle prediction that would 
be the closest fit to the one provided by MUSICO 
Fiber (Mijailovich et al., 2021). 

Since the relaxation period is generally harder 
to fit, RMSE was weighted, giving the fitness of the 
second part of force development a greater impact 
on the resulting error.

2.4 Drug testing workflow

The drug actions are different for treating a variety 
of symptoms associated with cardiomyopathies. In 
particular, drugs simulated using MUSICO (Mi-
jailovich et al., 2021) are divided into three major 
groups or pathways defined by the principal action 

of each drug, such as the effect on modulating cal-
cium transients or changing kinetics of contractile 
proteins. Each group consists of two subgroups 
based on a type of cardiomyopathy:

I Modulation of [Ca2+] transients 

HCM – Disopyramide, which lowers peak and 
baseline levels of [Ca2+] transient during twitch 
contractions,

DCM – Digoxin, which increases peak of [Ca2+] 
transient during twitch contractions, but does not 
change time to peak and relaxation time,

The workflow for testing these types of drugs 
is shown in Fig. 3. The experimental observations 
in action potentials and changes in ionic currents 
are simulated using O’Hara-Rudy electro-physio-
logical model that produces intracellular calcium 
transients as an input for MUSICO and MP sur-
rogate models.

Fig. 3 Pathway 1:  Drug action via modulation of calcium transients through changes in ionic currents or membrane properties.

II Changes in kinetic parameters 

HCM – Mavacamten, which is associated with the 
regulation of kinetics rates of transition between dis-
ordered myosin detached states and ordered SRX state,
DCM – dATP, which modulates cross-bridge cycle 
rates,

The workflow for testing these types of drugs is 
shown in Fig. 4. The experimental observations 
in the experiments in vitro that quantify the effect 
of specific drug (dose) are used for the estimation 
of parameters for MUSICO and MP surrogate 
models.
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Since drugs in groups I and II directly affect MU-
SICO and MP surrogate parameters, we were able 
to predict with our tools the outcome on force gen-
eration in sarcomeres during twitch contractions.

III Changes in macroscopic parameters 

HCM – Entresto®, which acts on remodelling of 
heart ventricle walls and modulates the elasticity 
of blood vessels, typically reducing resistance to 
blood flow and improving cardiac output in HCM.
The workflow for testing these types of drugs 
is shown in Fig. 5. The experimental observa-
tions in many clinical trials are used as an in-
put for FE models yielding the precise model 
of Entresto® action.

Fig. 5 Pathway 3: Drug action through macroscopic structural 
and boundary condition changes.

3. Results

The simulations using virtual loading predict left 
ventricular pressure and volume changes between 
healthy and HCM and DCM hearts. The predicted 
traces of the pressures and volumes during heartbeats 
can be plotted as left ventricular Pressure-Volume 
loops (Fig. 6). These simulations were obtained using 
the MP model parameters and experimental calci-
um transients, with modified lower basal calcium 
levels and by changing a “force-scaling” mechanical

Fig. 6 Left ventricular (LV) Pressure-Volume (P-V) loops 
during two consecutive heart beats for normal heart (WT, 

black line), hypertrophic (HCM, green line) and dilated 
cardiomyopathy (DCM, blue line) obtained with FE coupled 

with MP surrogate micro model.

Fig. 4 Pathway 2: Drug action through changes in kinetics of contractile proteins.
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parameter, eta, in MP model in order to increase 
twitch peak tensions to observed level.

3.1 Entresto drug influence

ENTRESTO® (Sacubitril/valsartan) has been shown 
to be superior to enalapril in reducing the risks of 
death and hospitalization for heart failure (HF). 
There are also publications which evaluate the ef-
fects of sacubitril/valsartan on clinical, biochemical, 
and echocardiographic parameters in patients with 
heart failure and reduced ejection fraction (HFrEF). 

3.2 Numerical results from the SILICOFCM plat-
form for patients before and after  

Entresto treatment

Here, we tried to mimic patient cases before and af-
ter Entresto drug treatment. Before Entresto treat-
ment PV diagram, pressure diastolic distribution 
and pressure systolic distribution are presented in 
Fig. 7. It represents a typical hypertrophic cardio-
myopathy patient with decreased ejection fraction 
and higher systolic pressure (Fig. 7 left, pressure 
volume diagram).

Fig. 7 PV diagram, pressure diastolic distribution, pressure systolic distribution for the case before Entresto treatment.

Fig. 8 PV diagram, velocity distribution in the diastolic phase, velocity distribution in the systolic phase for the case  
after Entresto treatment.

After Entresto treatment (Fig. 8), we can observe 
a lower systolic pressure as well as an increasing 
difference between the end of diastolic and the end 
of systolic volume. It directly leads to the increase 

in the ejection fraction. The pressure-volume di-
agram, velocity distribution in the diastolic and 
systolic phase for the case after Entresto treatment 
is presented in Fig. 8.
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3.3 Realistic geometry of the heart model with 
left chamber and atrium parts

Using experimental data and DICOM files provided 
from specific patient, we have reconstructed a re-
alistic heart model as STL format with left atrium 
(Fig. 9a, marked blue) and chamber part (Fig. 9a, 
noted yellow) with the accompanying mitral valve 
cross-section between (Fig. 9a, marked green), 
and also aortic part (Fig. 9a, marked orange) of 
the model with aortic cross-section included in 
fluid part of the model, which is surrounded by 
solid wall (Fig. 9a, wireframe). Finite element model 
consists of 1.5M hexahedral 3D elements, divided 
by 1M nodes. Model geometry is generated using 
STL files. Solid nodes are constrained around in-
let/outlet cross-sections (Fig. 9a; red and magenta 
rings), and in the zone close to the mitral valve 

cross-section. Other solid nodes are free. In the 
Fig. 9c, two cross- section regions are marked to 
define prescribed inlet and outlet zones. Inside the 
fluid domain, mitral valve cross-section is present-
ed (part of the model between ventricle and atrium; 
Fig. 9c, red line). Fiber direction in the solid domain 
of the realistic heart model is shown in Fig. 9b, and 
section C on the same Fig. shows distribution of the 
velocity field in the realistic heart model, at 0.1s. 
It can be seen that velocity values are the highest 
at inlet and outlet boundary cross-sections (red 
and green lines, Fig. 9c), which is logical due to 
prescribed inlet function and prescribed values at 
that cross-section at the beginning of simulation. 
Regarding the material models used, we have select-
ed Holzapfel material model for obtaining passive 
stresses in the heart wall, and for muscle activation 
Hunter material model for active stresses is used. 

Fig. 9. a) Realistic heart FE model with representative cross-sections and fluid parts; b) Direction of fibres in solid part  
of realistic model; c) Fluid velocity field at 0.1s (mitral and aortic cross-section noted)
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The prescribed inlet velocity function profile is 
shown in Fig. 10a, and aortic valve cross-section, 
while outlet velocity function profile is shown in 

Fig. 10b. Activation of the muscle is achieved using 
calcium function, displayed in Fig. 10c.

Fig. 10. a) Inlet function of velocity, at mitral valve cross-section; b) outlet velocity function – at aortic valve cross-section;  
c) Calcium concentration function used for activation of the muscle

Field of displacements in solid wall of realistic 
model of heart, during four different time steps of 
one cardiac cycle, is given in Fig. 11. At first step 
(0.1s), just the passive part of the material model has 
an impact on solid wall structure and until 0.4s of 
simulation model volume is increasing until the mi-
tral cross-section is opened and fluid flows into the 

left chamber part. When the mitral valve is closed 
and injection of fluid is finished, fluid starts to eject 
from the chamber through the aortic cross-sec-
tion, calcium function inside Hunter material model 
starts to act (0.5s), causing the start of the muscle 
contraction until the 0.9s of simulation after which 
model slowly returns to its undeformed state.



| 57

Nenad D. Filipović
Computer modelling and artificial intelligence with big data  
for better diagnostics and therapy of cardiovascular disease

The large-scale model of the total heart with defor-
mation simulation and mesh generated with 3M 
finite elements has been given in the Fig. 12. All of 
these models represent integration of Big Data tech-

nology, HPC and FEM computing. A very specific 
hardware and software technology has been used to 
support this integration. Some of the examples are 
EU projects SILICOFCM for in silico clinical trials. 

Fig. 11. Field of displacements in the solid wall of the realistic heart model; four different time periods. Undeformed configuration 
noted as black mesh

Fig. 12. Large scale model of total heart. a) Displacement simulation b) Mesh generated with 3M finite elements



58 |

PROGRESS
Vol. V / No. 2
2024.

4. Discussion and Conclusions

The main result of the SILICOFCM project is a mul-
ti-modular, innovative in silico clinical trials solution 
for the design and functional optimization of whole 
heart performance and monitoring the effectiveness 
of pharmacological treatment, with the aim of re-
ducing animal testing and human clinical trials. The 
SILICOFCM platform is based on the integrated 
multidisciplinary and multiscale methods for the 
analysis of patient-specific data and development of 
patient-specific models for monitoring and assessing 
patient condition through the progression of disease. 
The STRATIFYHF project is to develop and clini-
cally validate a truly innovative AI-based decision 
support system for predicting the risk of heart failure, 
facilitating its early diagnosis and progression pre-
diction that will radically change how heart failure is 
managed in both primary and secondary care

Heart modelling for cardiomyopathy and elec-
tromechanical coupling of the left ventricle were 
analyzed in the SILICOFCM (www.silicofcm.eu) 
and STRATIFYHF (www.stratifyhf.eu) project. 
Automatic left ventricle segmentation and the 
geometric parameter model which was extracted 
from echocardiographic apical and M-mode view 
was done using the U-net architecture. We have 
developed a model which includes three kinetic 
processes of sarcomeric proteins interactions: (i) 
kinetic transition between three cross-bridge states 
(a detached state and attached pre- and post-power 
stroke states; (ii) Ca2+ regulation of thin-filament 
switches between blocked and open states (i.e. by 
azimuthal movement of regulatory units (RU) con-
taining troponin-tropomyosin complexes); and (iii) 
process of myosin binding to actin when RUs are 

in an open state. The drug actions are different for 
treating a variety of symptoms associated with car-
diomyopathies. In particular, drugs simulated with 
MUSICO (Mijailovich et al., 2021) are divided into 
three major groups defined by the principal action 
of each drug, such as modulating calcium transients 
or changing kinetics of contractile proteins. 

We have presented PV diagrams related to differ-
ent patient cases, pressure diastolic distribution and 
pressure systolic distribution before and after Entresto 
and Digoxin drug treatment. Different drug pathways 
which directly affect the functional heart working have 
been analyzed. These drugs have a direct influence on 
the cardiac PV diagrams and ejection fraction. Tri-
angular, parabolic, steep, shifted parabolic, parabolic 
wider and corresponding PV diagrams for different 
Ca2+ concentration functions have been presented.

Some limitations of the study are the lack of 
details regarding physical and biological properties 
of the heart and the need for subject-specific esti-
mation of parameters from limited, noisy data, typ-
ically obtained using non-invasive measurements. 
Also, limitations are large-scale finite element cal-
culations which can take up to several hours.

Computational platforms such as SILICOFCM 
and STRATIFYHF are novel tools for risk predic-
tion of familial cardiomyopathy and heart failure 
in a specific patient that will certainly open a new 
avenue for in silico clinical trials in the future.
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